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1.0 INTRODUCTION

BOPACE is the acronym for the Boeing Plastic Analysis Capability for

Engines. BOPACE was developed by Boeing/Huntsville to meet the evident

need for an advanced thermal-elastic-plastic-creep structural analyzer.

Although BOPACE development has been strongly influenced by the

requirements for structural analysis of engines, in particular the

space shuttle main engine, its capabilities have been kept quite general

and it is applicable to many types of nonlinear structures.

The philosophy for program development was based on the following

requirements.

1) Analysis of very high temperature and large plastic-creep effects.

2) Treatment of cyclic thermal and mechanical loads.

3) Improved material constitutive theory which closely follows

actual behavior under variable temperature conditions.

4) A stable numerical solution approach which avoids cumulative errors.

5) Capability for handling up to 1000 degrees of freedom with moderate

computation cost.

Although the finite-element method was first applied to plasticity

in the early 1960's, and several good programs for nonlinear analysis

have since been developed, numerous improvements were indicated in order

1-1



D5-17266-1

1.0 (Continued)

to satisfy the above requirements. For example, some other available

programs assume linear plastic hardening, accumulate errors by failing

to satisfy equilibrium at each step, or do not completely account for

the effects of variable temperature on the elastic and plastic relations.

The stated requirements have been effectively met by the current BOPACE

program version. In addition, the research and development effort has

led to an improved hardening theory for cyclic plasticity, a method for

representing general cases of load reversal, and advanced techniques for

improving the accuracy and controlling convergence of highly nonlinear

solutions.

Two versions of the current BOPACE program are available. The first

is a 300-DOF version developed for fast analysis of small size problems

within moderate core-storage limitations. The second is the basic 1000-

DOF version. In addition, a low-core modification of the 1000-DOF

version has been accomplished through the use of overlays and dynamic

storage of arrays. BOPACE is written in FORTRAN IV and has been

extensively run on both the IBM 360 and UNIVAC 1108 computer systems.

Documentation consists of three volumes: Theoretical Manual, User Manual

(including example problems), and Programmer Manual.

The BOPACE development and programming effort has been performed at

Boeing/Huntsville by Dr. R. G. Vos, with suggestions and review by

W. H. Armstrong. A. H. Spring assisted with many analyses and program
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1.0 (Continued)

checkout. J. L. Ballinger of Boeing Computer Services modified and

programmed the Gauss wavefront solution method. Recognition is also

due to N. L. Schlemmer, L. Salter and R. Hurford at the NASA Marshall

Space Flight Center, and L. Johnston of Brown Engineering Co., for

their suggestions and support of the program development.
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2.0 MATERIAL CONSTITUTIVE THEORY

The basic purpose of classical constitutive theory in an elasto-visco-

plastic program such as BOPACE is to provide incremental relations

between stresses and strains. BOPACE uses these relations with the finite-

element stiffness method to provide a convenient and efficient approach

for solution of an important class of nonlinear material problems.

BOPACE performs plane-stress and plane-strain analyses, as well as limited

3-dimensional analyses involving prescribed non-zero values of normal

stress or strain. It accounts for elastic, plastic, thermal and creep

deformations, and the nonlinear dependence of all deformations on

temperature. New constitutive developments include a combined plastic-

hardening theory, and a generalized approach to cyclic load reversal. The

BOPACE constitutive theory is developed by a tensorial approach which

provides all relations in a form which is invariant under coordinate

transformations.

2.1 ELASTICITY EQUATIONS

This section defines the cumulative and incremental forms of the relations

for temperature-dependent elasticity. The BOPACE formulations for plane

stress and plane strain are developed, including the effects of prescribed

non-zero values for normal stress or strain.

General Concepts and 3-D Relations - The basic cumulative stress-strain

relation, for either temperature-dependent or temperature-independent

elasticity, is

2-1
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e e
eij = Dijkk k (2.1-1)

vhere a and Ee are the 3 x 3 tensors of stress and elastic (recoverable)

strain, respectively, and De is the tensor of elastic coefficients

which may depend on temperature. For convenience we will use the

equivalent single-subscript notation

SD .  (2.1-2)
*i 1J 3

where subscripts i and j range over all nine of the tensor components.

For 3-dimensional analysis the relation 2.1-2 is taken as

e
xx XX

e

yy yy

zz D 0 0 zz

Gxy = 0 I D2 2  0 e (2.1-3)

0 e

Gyz L '33 yz

yx yx

e
zy zy

e
2-Z XZ
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2.1 (Continued)

where

11 (l+v) E (1-2v) v 1-v v

and

1-2v 0 0

22 D3 3 = (1+v) (1-2v)

0 0 1-2v

Here E is Young's modulus and v is Poisson's ratio.

Note that the elasticity matrix in Equation 2.1-3 is consistent with

the tensorial definition of shear strains (e.g. e y e /2,

where Yxy is the engineering definition of shear strain). Tensorial

definitions are used throughout the BOPACE program in order to easily

formulate constitutive theory which is invariant with respect to

coordinate transformations. Although such invariance can be achieved

by a careful use of engineering strain definitions, such definitions

are probably responsible for many invariance difficulties such as

those described in Reference 1.
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The last three of Equations 2.1-3 are somewhat redundant and may be discarded

to give an abbreviated 6-component form (e.g. y x = Yoxy and Eyx = Exy ) .

It should be emphasized, however, that in performing later summations

all non-zero values of the nine tensor components must be accounted for.

Relations for Plane Stress and Plane Strain - For plane stress, the

abbreviated form of Equation 2.1-2 is

S1 v 0 exx xx
E 1v 1 0 e (2.1-4)

xy xy

and for plain strain it is

a 1-v v 0 e
xx xx

E V 0 6 e (2.1-5)yy (1+v)(1-2v) j(
xy 0 0 1-2d ee
xy _ xy

Incremental Relations - For the case of temperature-independent

elasticity the incremental stress-strain relations are simply
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2.1 (Continued)

Ao. = D. AEe  (2.1-6)

where A denotes an incremental quantity and De is the appropriate

elasticity matrix.

When temperature dependence is considered, the incremental relations

become

Aoi = ADe e + el A (2.1-7)
1i J iJ J

where eO are the elastic strains at the beginning of the increment,

Del is the elasticity matrix evaluated for the temperature at the

end of the increment, and ADe = Del - DeO is the change in elasticity

matrix from beginning to end of the increment. The first term in

Equation 2.1-7 accounts for stress change due only to change in elastic

properties, while the second term accounts for additional stress change

due to the increment of elastic strain.

BOPACE Formulations - The BOPACE program allows the option for either

a "plane-stress" analysis with prescribed non-zero values of normal

stress ozz, or a "plane-strain" analysis with prescribed non-zero values

of normal strain Ezz"

In plane-strain problems, BOPACE uses the 3-D elasticity matrix of

Equation 2.1-3 because, even though the total (physical) strain czz
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2.1 (Continued)

might vanish, the elastic strain e is in general not zero. If a

non-zero value is prescribed by the user for czz' no additional

difficulties are introduced.

For plane-stress problems, BOPACE uses the elasticity matrix of

Equation 2.1-4. For the general case when a non-zero value is prescribed

by the user for ozz, an additional term is required in the stress-strain

relation. The resulting general plane-stress equation is

e

SL 0 0 1-V E 0

or

e e + , e (2.1-8b)i 1 D 1 zz

where e v

The general incremental plane-stress relation for temperature-dependent

elasticity then follows Equation 2.1-7:

AG = AD e e + Del Ace + A e  0 +  el Aaz (2.1-9)

1 lj E ii j i zz 1 zz

where 0 and AoZZ are respectively the initial and incremental valuesZZ whereZZ

of prescribed normal stress.
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2.2 THERMAL STRAIN

Alternate Formulations - The conventional description of thermal strain

is given by

t

A yy = y AT 1 (2.2-1)

t
ZZ

where t denotes thermal strain, T is the temperature, and y is the thermal

coefficient of expansion which may be a function of temperature.

An alternate integrated description of thermal strain is

-t

:yy = (T) 1 (2.2-2)

zz

where here - gives the thermal strain directly as a function of temperature.

-tIf only incremental thermal strains are of interest, E may be taken

as zero at any convenient reference temperature.

BOPACE Formulation - BOPACE uses the direct form 2.2-2. This form is

preferred over that involving a thermal expansion coefficient because

accumulated errors in thermal strain are not introduced. These errors

could arise with the form 2.2-1, in case y varied with temperature and

the specified heating and cooling sequences used different temperature
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2.2 (Continued)

increments. BOPACE takes the structural fabrication temperature as the

reference temperature for zero thermal strains.

2.3 PLASTICITY

This section defines the incremental elasto-plastic relations used in the

BOPACE program. BOPACE employs a new concept of combined isotropic and

kinematic hardening, and accounts for temperature-dependent elasto-plastic

behavior as well as a generalized form of cyclic load reversal. In order

to develop the constitutive theory in a straightforward manner, discussion

of the effects of temperature-dependent elasticity on the elasto-plastic

relations is deferred until Section 2.5.

Definitions - The following nomenclature is defined.

a = total stress

a = stress center (of yield surface in kinematic

hardening)

s = deviatoric (total - hydrostatic) stress

a = deviatoric stress center

s = s - a = relative deviatoric stress

e elastic (recoverable) strain

EP = plastic (time independent non stress-inducing strain)

Le+p = e + E

2-8
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General Concepts - The basic concepts in most elasto-plastic theories are

those of a yield surface, the dependence of yield on only the deviatoric

stress components, incompressibility under plastic strains, and normality

of the incremental plastic-strain vector to the yield surface. The

definition of a particular theory requires assumptions for three basic

constituents:

1. a surface relating the stress components at yield

2. a flow rule defining a direction for the incremental plastic-

strain vector

3. a hardening rule.

Yield Surface - BOPACE employs the Huber-Mises yield surface [2],

defined by the relative deviatoric stresses as

F = sis i - sis = 0 (2.3-1)

where the summation is again taken over all nine tensor components of s.

The si are components of a point on the yield surface at a known condition

of temperature and plastic deformation, e.g. from a uniaxial test.

Equation 2.3-1 holds whenever the material is plastic, i.e. whenever

the components of s are on the yield surface. Function F may be thought

of geometrically as defining a hypersphere in 9-dimensional stress space.

Alternatively, when expressed in the 3-D space of principal stresses, this

yield surface can be shown to be an open-ended circular cylinder whose

axis passes through the origin and makes equal angles with each of the

2-9
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three principal stress axes. The Huber-Mises yield surface is generally

used to describe plasticity in metals because it agrees reasonably well

with test results and it gives a smooth surface which is convenient for

calculations.

Flow Rule - BOPACE uses the Prandtl-Reuss flow rule, which is the usual

rule associated with the Huber-Mises yield surface. The assumptions are

that the material is incompressible under plastic flow, and that increments

of plastic strain are normal to the yield surface at the stress point.

These provide the relation

AE X = Xsi  (2.3-2)

where X is a flow parameter.

Basic Hardening Concepts - An elastic-plastic material which work hardens

in the plastic range is commonly analyzed using either of two classical

hardening theories. Isotropic hardening [3], which assumes a uniform

expansion of the yield surface during plastic flow, accounts for change

in size of the hysteresis loop during cycling. Kinematic hardening [4],

which assumes a rigid translation of the yield surface in the direction of

the plastic strain increment, accounts for the pronounced Bauschinger effect

which is evident in cyclic behavior of most metals. In general, the actual

cyclic behavior can be more accurately described by a combination of

isotropic and kinematic hardening. A combined hardening theory has been

2-10
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given by Hodge [5] for materials which satisfy the Tresca yield condition.

Because a better representation for most metals is provided by the Huber-

Mises yield surface, a corresponding combined hardening theory [6] has

been developed for the BOPACE program.

Hardening Parameters - A simple combined hardening theory such as that

presented in Reference 6 makes two basic assumptions:

1) Size of the yield surface is a function of a cumulative hardening

parameter, K. This means that the isotropic hardening, i.e. the

incremental change in size of the yield surface, depends on the

initial value of K and its change AK.

2) Yield surface translation is related (but only in an incremental

manner) to a kinematic hardening parameter, Kk . The kinematic

hardening, i.e. the incremental translation of the yield surface,

depends on the initial value of Kk and its change AKk.

It will be evident in the discussion to follow that isotropic hardening

can be related to K on either a cumulative or incremental basis, while

kinematic hardening can be related to Kk only on an incremental basis.

In addition to the parameters K and Kk, hardening is also a function of

temperature.

Figure 2.3-1 shows hysteresis loops for the first two strain-controlled

cycles of a typical material which exhibits combined isotropic and

2-11
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kinematic hardening. The Bauschinger kinematic hardening effect is

apparent in that the initial yielding in tension causes a reduced yield

stress in compression, i.e. a shift of the yield center by an amount c.

Successive yielding in compression causes a reduced yield stress in

tension, and so forth. Isotropic hardening causes the increase in size

of the hysteresis loop with continued cycling. The hysteresis loops for

many materials become stabilized after a number of cycles, and then may

begin to decrease in size as further deformation causes a softening

effect.

Figure 2.3-2 shows the stabilized hysteresis loops for a material at

various temperature levels. (Different strain ranges are used to separate

the loops for purpose of illustration). The hysteresis loop of a material

typically decreases in size with increasing temperature. Note that the

size of the yield surface will vary in a similar manner with temperature.

Also the rates of isotropic and kinematic hardening with respect to

plastic deformation vary with temperature.

The isotropic hardening parameter K may be appropriately taken as either

the cumulative plastic work, or as the sum of increments of effective

plastic strain. The kinematic hardening parameter Kk must account for

the Bauschinger effect in cyclic loading, and it may be taken as an adjusted

value of K. As long as no load reversal occurs and the loading is

proportional, Kk is simply equal to K. However, Kk must be set to zero

at the start of each increment in which a complete load reversal occurs.

2-13
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(A complete load reversal occurs when the incremental plastic strain

vector has a direction exactly reversed from that of the previous

plastic increment). For an incomplete load reversal, the BOPACE program

computes the starting value for Kk by multiplying the existing accumulated

value of Kk by the factor (1 + COSINE)/2, where COSINE is the Cosine of

the angle between successive incremental plastic strain vectors. At the

end of each increment, Kk becomes Kk + AK.

Because the Bauschinger effect varies with cumulative deformation in

certain materials (e.g. it may become more pronounced as plastic cycling

continues), BOPACE allows an additional option for the kinematic hardening

to be defined as a product of two functions. The first is a function of

Kk and defines the shape of the kinematic hardening, while the second is

an additional factor which depends on K and defines the magnitude of the

kinematic hardening.

In order to implement the BOPACE hardening theory, it must be determined

how the size of the yield surface varies with temperature. In addition,

the dependence of isotropic and kinematic hardening on the parameters K

and Kk must be determined. This is accomplished through cyclic tests

performed at various temperature levels. Because the cyclic hardening

behavior is thus determined for a constant temperature, an assumption

must be made for variable temperature cycling. The hardening effects of

variable temperature are illustrated in Figure 2.3-3. As long as

temperature remains constant, plastic hardening behavior is defined by

2-14
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following the shape of a stress-strain curve at the given temperature,

say to the point 0 on the T2 curve. If temperature changes to T3, and

then plastic deformation continues, an initial point must be determined

on the T3 curve from which the new yield surface size and initial

hardening slope may be determined. This transfer from curve T2 to

curve T3 requires a definition of the basis for hardening, i.e. the

definition of the parameters K and Kk. BOPACE allows the option of

either plastic work or the sum of increments of effective plastic strain

to be used as the hardening basis. The strain and work options correspond

to the respective points 1 and 2 in Figure 2.3-3.

The hardening relationship determined from a series of cyclic tests may

depend somewhat on the strain range used in a particular test. If strain

range is a significant factor the test conditions should duplicate the

approximate expected strain range for which an analysis is to be made.

The choice between plastic strain and plastic work as a basis for the

hardening parameters K and Kk may depend to a large extent on which basis

provides the better overall representation of cyclic behavior at various

strain ranges.

Multiaxial Hardening Rule - The kinematic hardening rule employed in

BOPACE is that due to Prager [4]. It gives the increment of yield surface

translation in terms of the incremental plastic strains, as

Ai = Ci AEp e 2= c I. A2 (2.3-3)
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where c is the kinematic contribution to the slope of the uniaxial

stress vs. plastic-strain curve, and I is the identity matrix. An

alternate hardening rule due to Ziegler [7] is preferred by some

plasticity analysts because the form of Ziegler's rule does not change

with reduction in the number of spatial dimensions, and it is therefore

supposed to simplify the calculations. Prager's rule is considered

more acceptable from a physical point of view, however, and it presents

no difficulty when all components of the required tensors are retained

as in the BOPACE program. Note that for Prager's kinematic hardening

rule, the deviatoric stress center is equal to the stress center,

ai = Ci.

The isotropic hardening, i.e. change in size of the yield surface due

to plastic deformation, is defined for a proportional test loading by

As? = R? = -r i.. AE (2.3-4)
1 ij j 3 ij a

where r is the isotropic contribution to the slope of the uniaxial

stress vs. plastic-strain curve.

The necessary condition that stresses remain on the yield surface-is

satisfied by taking the differential of Equation 2.3-1. The condition

is AF = 0, which can be shown to give

si Aai - si A - s° As? = 0 (2.3-5)

or
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si Aoi - AX 0 (2.3-6)

where A s As? = C s s + R? . s? s °  (2.3-7)
where A = i  1 1 i 1 1 1

The key to a successful combined hardening theory is the proper

determination of the hardening variable A. The BOPACE program uses

hardening tables which give the yield-surface size and the surface

translation as functions of the hardening parameters K and Kk. These

are two-dimensional tables for each material whose ordinates and

abscissas are, respectively, temperature and hardening parameter. Given

the initial values of K and Kk at the beginning of an increment, and

estimated values for AK and AKk , the corresponding increments of isotropic

and kinematic stress increase are obtained from the hardening tables.

(Hardening due to temperature change is included by adding it to the

isotropic stress increment). The hardening slopes c and r are then

computed, by dividing the incremental stress increases by the estimated

increment of effective plastic strain. This procedure gives average values

for the slopes c and r during the increment, and tends to produce a quite

stable numerical iterative process. Note that it is the isotropic and

kinematic stress increases, rather than the slopes c and r, which are

directly relatable to the hardening parameters. The choice of a test value

for so in Equation 2.3-7 is arbitrary, as long as it is a point on a yield

surface of size corresponding to s, i.e. a surface with equal values of

temperature and parameter K. It is convenient in BOPACE to take sO equal

to s.

2-17



D5-17266-1

2.3 (Continued)

Incremental Stress-Strain Relation - The incremental stress-strain

relation now follows the development of References 8 and 9. Take

Aai = D . AEe = AE e - D .ij s .X (2.3-8)

where De is the appropriate matrix of elastic constants.

Then

AA = s. A 1i= s A D . s . (2.3-9)

which gives

=s De Ae+P/(A s k DeO )  (2.3-10)

Substituting Equation 2.3-10 into Equation 2.3-8 provides the desired

relation

,e  
ek e

. = D. k sk s (2.3-11)
A + sm Den sn

or

A. = (D . + D) Ae+p = D.. A e+ p  (2.3-12)

D is the elasto-plastic Jacobian (tangent-stiffness) matrix relating

incremental stresses to incremental elastic+plastic strains. In effect,

it separates the elastic and plastic strains and determines the incremental

stress corresponding to the incremental elastic strain. DP is the stiffness
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reduction due to plastic flow, and becomes zero for the case of infinite

hardening, i.e. A = -, or equivalently the total slope (c+r) of the

stress vs. plastic-strain curve is infinite.

Yield Surface Correction - Because an incremental plasticity solution

generally involves a variable stress-strain slope and a changing direction

of the surface normal within each increment, the yield surface relationship

given by Equation 2.3-1 may not be satisfied exactly. It is probably

desirable to exactly satisfy this relationship, i.e. have F = 0, at the

end of each plastic increment. This can best be accomplished by making

a correction to the stress values, and holding constant all other quantities

involved in Equation 2.3-1. Proceeding in a manner similar to that of

Reference 10, the change in F due to a change in stress is

AF = 2 s i Aoi  (2.3-13)

We take the stress correction to be defined by

AGi = Pni (2.3-14)

where p is a scalar factor to be determined for the stress correction,

while
A

xx

= yy (2.3-15a)

zz

xy
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for plane strain, and

xx

n (2.3-15b)
0

xy

for plane stress. Thus the direction of the stress correction is taken

normal to the yield surface, except that in plane stress the value of

ozz is not corrected. Then

AF = 2 Tii p (2.3-16)

giving

AF (2.3-17)
P 2 rlnini

and

S= p AF I (2.3-18)
i i 2 ni i

The stress correction is computed from Equation 2.3-18 using for AF the

negative of the error evaluated for function F in Equation 2.3-1. Because

the yield surface relation is to be satisfied at the end of the increment,

all quantities in Equation 2.3-18 are also evaluated at the end of the

increment.
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Effective Stress-Strain and Plastic Work - The concepts of "effective

stress" and "effective strain" are related to plastic work, and are used

extensively in the literature on plasticity. These concepts are used in

a limited way in the development of constitutive theory for the BOPACE

program.

Because they can easily be misapplied, especially in the presence of

kinematic hardening, the use and limitations of the concepts are briefly

discussed here for the Mises plasticity theory.

Due to characteristics of the Prager hardening theory, the following

statements of equivalence and proportionality should first be noted.

Aai  Aci APS-sI s i  (2.3-19)

Because of the incremental nature of kinematic hardening, s i and s i

are in general not proportional.

The Mises effective stress a is defined by

-2 3
= ~ si Si  (2.3-20)

The incremental and cumulative values for plastic work, WP, are given by

AwP = Yi A pe (2.3-21a)
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2.3 (Continued)

and

Wp = A.p  (2.3-21b)

where Z denotes summation over all increments. For the special case of

proportional loading (i.e. loading in which all stress components are

increased proportionately) followed by a constant stress level (i.e. no

plastic hardening), the cumulative plastic work is given by

WP = ai '  (2.3-21c)

As a matter of convenience in computing plastic work, an increment of

effective plastic strain, A p , has historically been defined by

(A = )2 = A Ace (2.3-22)31 i

At this point, however, care must be exercised in using the historical

calculation for plastic work. If kinematic hardening were zero, then

s = i , and because Ae is proportional to si the use of Equations 2.3-20

and 2.3-22 would give plastic work as

AWN = A--p  (2.3-23a)

and

W = Z 0 AE (2.3-23b)
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If in addition, the condition were one of proportional loading and

constant stress, then by defining the cumulative effective plastic strain,

-P, in the same manner as AP , we would have

Wp = a 6 (2.3-23c)

Of course the Equations 2.3-23 in general are not valid, because of the

presence of kinematic hardening and non-proportional loading. Thus plastic

work must be computed from Equation 2.3-21a and b, rather than from the

product of effective stress and strain quantities.

The quantity F_ serves little purpose in a general plasticity analysis,

although it is a tensorially invariant quantity and does provide a measure

of net residual deformation. For a rational measure of deformation history,

either the plastic work, WP, or the sum of increments of effective plastic

strain, E AE , is appropriate. The difference in concept between the

quantities WP and E AP should, however, be recognized.

2.4 CREEP

Stages - Metals characteristically exhibit the three stages of primary,

secondary and tertiary creep. Figure 2.4-1 shows these stages in a typical

creep history under conditions of constant temperature and stress.

Because creep rate varies considerably during the different stages, the

description of actual creep histories is considered to be essential for

an accurate analysis. The BOPACE program accounts for the creep time
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I II I

TIME

FIGURE 2.4-1 : TYPICAL CREEP STAGES

T

To.

TIME

FIGURE 2.4-2 : BOPACE CREEP REPRESENTATION (EXAMPLE FOR VARIABLE TEMPERATURE
AND CONSTANT STRESS)

(1) AGE HARDENING

(2) STRAIN HARDENING

(3) WORK HARDENING 62

TIE

FIGURE 2.4-3 : BOPACE CREEP HARDENING OPTIONS (EXAMPLE FOR CONSTANT
TEMPERATURE AND VARIABLE STRESS)
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2.4 (Continued)

history by allowing the user to define, by a series of input points,

the shape of the effective-creep-strain vs. time curve for each material.

Temperature and Stress Effects - Creep rate in most metals is very

dependent upon temperature and stress level. The BOPACE approach to

creep analysis provides a reasonable description of temperature and stress

effects, while avoiding excessive storage and computational requirements.

For each material, BOPACE requires a reference creep curve shape which

gives the relative variation of effective-creep-strain vs. time for the

various stages considered. This shape is assumed to be valid for all

the temperatures and stress levels of the particular material. A table

of creep factors for the material is then specified as a function of

temperature and effective stress, and a portion of the actual creep curve

is determined by multiplying the reference creep curve by the appropriate

factor using the average temperature and stress during the increment.

Figure 2.4-2 shows portions of typical creep curves for the special case

of constant stress level and variable temperature. Note that according

to BOPACE assumptions these curves have the same shape.

Hardening - As long as the temperature and stress level remain constant,

an increment of creep is determined by following the corresponding creep

curve for the given time increment. However, if temperature or stress

level changes, an initial point must be identified on the corresponding

new creep curve in order to determine the new creep rate. This transfer

from one curve to another requires an assumption for creep hardening,
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which in BOPACE is defined by a single hardening parameter, Kc . BOPACE

allows the option of either age, strain, or work hardening, for which K
c

is defined respectively as the accumulated time, sum of increments of

effective creep strain, or creep work. These options are illustrated in

Figure 2.4-3 for a case of constant temperature. Creep during the

preceding increments has progressed to the point 0 on the o1 curve. The

average effective stress during the present increment is a2 , which gives

the initial points 1, 2 and 3, respectively, for the options of age, strain

and work hardening. Incremental creep for the current increment is then

determined by continuing along the a2 curve from the appropriate initial

point, for a distance equal to the specified creep time increment. In

the general case both temperature and stress will vary from one increment

to the next, but the hardening option still determines in the same manner

how the transfer is made between the creep curves.

Load Reversal - The main use of the creep-hardening parameter Kc

comes into play during a load reversal. When a complete reversal occurs,

K is set to zero and the initial point on the creep curve is taken as that

corresponding to a zero value of Kc . (A complete load reversal occurs

if the incremental creep-strain vector has a direction exactly reversed

from that of the preceding creep increment.) For an incomplete load

reversal, the BOPACE program computes the starting value for Kc by

multiplying the existing value of K by the factor (1 + COSINE)/2, where

COSINE is the Cosine of the angle between successive incremental creep
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strain vectors. Parameter Kc then accumulates as before, i.e. at the

end of each increment Kc becomes K + AK

Multiaxial Flow Rule - The incremental creep-strain vector has

historically been taken normal to a Mises type of surface which passes

through the stress point. When kinematic plastic hardening is

considered, this surface could be taken either as the actual translated

yield surface, or as an untranslated surface which passes through the

stress point but whose center remains at the origin. The appropriate

choice of surface is not clear, and because the untranslated form of

surface is somewhat simpler, further complications are perhaps unjustified.

BOPACE therefore defines the multiaxial creep flow rule by

AE = (I 6/1) s (2.4-1)

where A-c is the increment of effective creep strain defined by

(A-c 2 = 2 e AsE (2.4-2)

The increment of creep work is then given by either

AWc = i AE (2.4-3a)

or

AWc = a c  (2.4-3b)
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2.5 COMPLETE STRESS-STRAIN RELATIONS

In Sections 2.1 to 2.4, the basic theory used in BOPACE for elasticity,

thermal strains, plasticity and creep has been discussed. The present

section describes the complete stress-strain relations, and the manner

in which simultaneous elastic, plastic, thermal and creep strains are

accounted for. The combined effects of temperature-dependent elasticity

and plasticity are included, and the specializations are described for

plane-stress and plane-strain problems.

General 3-D Relations - For temperature-dependent behavior, the required

elasto-plastic incremental stress-strain relation follows from Equations

2.1-7 and 2.3-8:

e j + el e+p _ el+ D s.X (2.5-1)i j ij j i J

Here the first term accounts for stress change due to change in elastic

properties, while the second and third terms account for stress change due

to change in elastic strain. Following Equation 2.3-9,

Ae eO e l  e+ p  De l  (2.5-2)
Ax = si A = si AD e + i - i i . (2.5-2)

where again

0 ̂ ^0 ̂oA = Ci. si s + R . si s. (2.5-3)
13 1 J 13 1 .

For the general case of temperature-dependent plasticity, Ro accounts for

isotropic hardening due to both plastic deformation and temperature. Then

e eO + el e+p
si ADij + s Dij (2.5-4)

A + s Delk s.
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Substituting Equation 2.5-4 into 2.5-1 gives

e Dik sks D eik sk s ej ae+ p

el e el el
D iks s D + ik D

SA + s Del ij A + s el

m mn sn m mn n

(2.5-5)

or, using abbreviated notation

A0 = (AD . + AD) + elaui (AD. E
0  (Del. + DP i?)Ae+P =1 3 i3 ii 13 J

(2.5-6)

ADij e0 + D1 A e+p
13 3 13 J

Thus the increment of stress is given by the sum of two products: an

incremental matrix times the initial elastic strains, plus an end-of-

increment matrix times the incremental elastic+plastic strains.

Calculation of Strains - The total strain increment, AE, is computed from

the incremental displacements. The strain AE is the physical (measurable)

strain in the structure, and is the sum of the elastic, plastic, thermal

and creep strains. The elastic+plastic strain, Ace+p, is needed for the

calculation of the stress increment in Equation 2.5-6. It is computed by

e+p = A AEC (2.5-7)

where t and Ec are the thermal and creep strains, respectively. Because

AEc depends on average stress level during the increment, and because the

normal s to the yield surface as well as the plastic slope parameters c and

r vary somewhat during the increment, BOPACE uses an iterative approach for

solution. The solution approach is discussed in Section 4.
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Plane Stress and Plane Strain - The development of Equations 2.5-1 through

2.5-6 is based on 3-dimensional relations in which all nine components of

the various tensors are properly accounted for. For plane-strain problems,

BOPACE uses the full 3-D relations and thus accounts automatically for

prescribed non-zero values of the strains Ezz"

For plane-stress problems, BOPACE uses the abbreviated elasticity matrix

of Equation 2.1-4 in Equation 2.5-6 (except that both the xy and yx tensor

components are accounted for). The hardening variable A must be computed

from Equation 2.5-3 using all components of s. In the case of a specified

e 0 elnon-zero value of the normal stress Oz' the quantity Au 0z + ei lA

is added to the right-hand-side of Equation 2.5-1. Following through the

incremental stress-strain derivation as before gives

= ADe e0 + . ce+p + e 0 el
S i ADij Ej + S i  

i  + 1UA + S z A ZZ (2.5-)

e lA + sk De s

The plane-stress equivalent of Equation 2.5-6 is then obtained in a similar

manner as before.
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3.0 FINITE ELEMENT REPRESENTATION

BOPACE uses the Constant-Strain-Triangle (CST) element in its thermal,

elastic, plastic and creep analysis. The following sections describe

the element stiffness matrices, the coordinate systems employed, and

the various coordinate-related transformations.

3.1 CST ELEMENT STIFFNESS MATRICES

Element Coordinates and Displacement Functions - The CST element is

shown in Figure 3.1-1. The element is defined using the x-y Cartesian

coordinate system, which is arbitrarily oriented with respect to the

element. (A coordinate system with origin at node 1, and x-axis along

the nodal line 1-2, is used for output of element stresses and strains.)

Displacements u and v correspond to the x and y coordinate directions,

respectively.

Following the general development of Reference 11, the displacement

functions are defined by

= b b (3.1-1)
b4 b5  b6  y

giving linear variation of displacements and constant strains within the

element.
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V 3

U 3y

V2

0U1

x

FIGURE 3.1-1: CST ELEMENT AND COORDINATES

Strain - Displacement Matrix - Evaluating the unknown coefficients b1

through b6 in terms of nodal displacements, substituting these values

into Equation 3.1-1, and differentiating to obtain expressions for the

strains, gives

Exx au/ax V1
-Yy av/ay U2
Exy (au/ay+8v/ax)/2 = [ V2 (?.1-2)

Eyx (au/ay+av/ax)/2 U3

v3

where the strain-displacement matrix, r, is given by

-Y32 0 Y3 1  0 -Y21 0

1 0 x32 0 -x3 1  0 x21
2A x32 /2 -y 3 2/2 -x 3 1 /2 Y31/2 x2 1 /2 -Y21/2

x3 2/2 -Y32/
2 -x31/2 Y31/2 x21/2 -Y 2 1/2
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3.1 (Continued)

Here A is the area of the triangle, xij and yij are abbreviated notation

for the differences xi-x j and Yi-Yj, respectively, and ui and vi are

displacements at the ith node in the x and y directions, respectively.

Plane-Stress Stiffness Matrix - For plane-stress conditions it can be

shown that the CST stiffness matrix, k, is given by

kij = A Dmn rmi rmj (3.1-3)

The elasticity matrix D is

1 v 0 0

[D] E v 1 0 0

1-v2 0 0 1-v 0

0 0 0 1-v

where E is Young's modulus and v is Poisson's ratio.

The stiffness matrix defines element generalized forces, pi, in terms of

displacements, qi, by

Pi = kij qj (3.1-4)

where q is the right-hand-side nodal-displacement vector in Equation

3.1-2, and p is the vector of corresponding nodal forces.

The stiffness matrix can be written as the sum of the stiffnesses due to

normal and shear components of the elastic properties

k = kn + ks  (3.1-5)
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where

Y322

-vY32x32  x322 Symmetric

kn Et -Y32Y31 vx 3 2 y31  Y312
4A(1-v 2 ) vy 3 2X31 -x 3 2 x31 -VY31X31 2

Y32Y21 -vx 3 2 2 1 Y212-Y31Y21 \X 31 21  y21
-\y 3 2 X2 1  x3 2 x2 1  VY3 1X2 1  -x3 1 x21  _Y2121 x212

and

x32
2

-x3232 322 Symmetric

Et -x 3 2 x31  Y3 2X31  x31

s 8A(+v) x32Y31  -Y32Y31 -x31Y31 Y312

x3 2 x2 1 -Y3221 -x 3 1 x2 1  Y3 1 x2 1  x21 2

-x 3 2y 2 1  Y32Y2 1  x31Y21 -Y31Y 2 1  -x 2 1Y21 Y21 2

Plane-Strain Stiffness Matrix - The plane-stress and plane-strain matrices

of elastic coefficients are defined by Equations 2.1-4 and 2.1-5, re-

spectively. If in the plane-stress elasticity matrix we substitute E for

E, and ; for v, where

= E/(l-v 2 ) (3.1-6a)

= v/(l-v) (3.1-6b)

we obtain the elasticity matrix for plane strain. This means that the

element stiffness matrix for plane-strain conditions will be defined by

Equation 3.1-5, providing that the substitutions E for E, and v for v

are made in the matrices kn and ks . BOPACE therefore uses the same

subroutine to generate stiffness matrices for both plane-stress and plane-
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strain problems, by using the appropriate values for Young's modulus and

Poisson's ratio in the plane-stress matrix generation.

Elasto-Plastic Stiffness Matrices - The complete incremental force-

displacement relation for an element corresponds to the stress-strain

relation 2.5-6. Because strains are constant within an element and are

directly relatable to nodal displacements, the relations are identical

in form:

pi = (Ake + AkP ) q 0 + (k el+ kP) Aqe + p  (3.1-7)

where each of the force-displacement matrices k is obtained directly from

the corresponding stress-strain matrix D, by using Equation 3.1-3.

For example,

kpF = A DP rmi mj (3.1-8)1i mn mi mj

3.2 COORDINATE SYSTEMS

Coordinate systems are used in BOPACE to define the locations of nodes and

to define the directions of nodal displacements.

Location Coordinate Systems - BOPACE allows the user to define nodal

locations by either of two global coordinate systems. These are the

X-Y Cartesian system and the R-e cylindrical system, shown in Figure

3.2-1. The X-Y and R-6 systems have a common origin, 0, and the angle e

is measured counter-clockwise from the X axis. The global X-Y system
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also serves as the local element x-y system which was discussed in

Section 3.1.

Direction Coordinate Systems - BOPACE allows the user to define directions

of the nodal displacements by three types of coordinate systems. These

are local Cartesian systems, with origins at each particular node. The

first two types are defined by the X-Y and R-e systems, respectively,

and the third type consists of special user-defined systems. The

three direction-coordinate types are shown in Figure 3.2-2 for a parti-

cular node, and are denoted by the respective subscripts 1, 2 and 3. The

first system measures displacements parallel to the global X-Y axes.

The second system measures displacements parallel and perpendicular to

the radius passing through the particular node. The user-defined systems

are at given orientations, defined by the counter-clocKwise angle from

the global X axis to the X3 axis. The special user-defined systems are

useful in cases where nodal displacements are to be prescribed in

particular directions. 1) X-Y

Y Y2) CYLINDRICAL

X-Y CARTESIAN 3) SPECIAL

R-e CYLINDRICAL X
X2

I l
Y3

0 0- --
x X

FIGURE 3.2-1: LOCATION COORDINATE FIGURE 3.2-2: DIRECTION COORDINATE
SYSTEMS SYSTEMS
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3.3 COORDINATE-RELATED TRANSFORMATIONS

This section gives the necessary transformations which convert BOPACE

quantities defined in one coordinate system to the equivalent quantities

in another coordinate system. The quantities considered are coordinates,

displacements, forces, stiffnesses, strains and stresses.

Y
y

SX

FIGURE 3.3-1: COORDINATE TRANSFORMATION SYSTEMS

Basic Transformation Matrix - Referring to Figure 3.3-1, the transfor-

mation relations will be developed between the x-y and X-Y coordinate

systems. The angle e is the angle, measured counter-clockwise from the

X axis to the x axis. Using the shorthand notation c and s to denote

respectively the Cosine and Sine of the angle e (i.e., the direction

Cosines of x given in the X-Y system), we define the 2-dimensional

transformation matrix, r, by:

S= (3.3-la)
-3-7
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Because of the orthogonality properties of this matrix, the inverse of

r is equal to its transpose:

P-1 = rT c -s (3.3-Ib)
S C

In the following transformations, upper and lower case letters will be

used to denote quantities which are referred to the X-Y and x-y coor-

dinate systems, respectively.

Coordinates - The coordinate transformations are given by

i = rij Xj (3.3-2a)

and

X = r-1 x = rT x (3.3-2b)

where

x = ( x and X = X(

Displacements The displacement relations are

qi = rij Qj (3.3-3a)

and

Qi T
Q. qi = T qi (3.3-3b)

where

q = u and Q = (U
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Forces - The generalized nodal force relations are

P = r pj (3.3-4a)

and

P =  ( T - P = .i P. (3.3-4b)

Stiffnesses - The transformation relations for a nodal (2x2) stiffness

matrix partition are

Kij = kmn rmi rmj (3.3-5a)

and

k -n i = Kmn ri rT (3.3-5b)1ij mn Fmi mj Kn mi mj

Strains - Transformation of the strain tensor is described by

Eij = smn Fmi rmj (3.3-6a)

and

E E r r-1 = E rT rT (3.3-6b)ij mn mi nj mn mi nj

where here e and E denote the strain tensor expressed in the x-y-z and

X-Y-Z coordinate systems, respectively, and r is the transformation matrix

(of x-y-z direction cosines) which gives x-y-z coordinates in terms of

X-Y-Z coordinates.

The 2-dimensional (x-y plane) strain transformations are written as

Exx [cc ss -2cs xx
SEyy = ss cc 2cs Eyy (3.3-6c)

SExy -cs -cs cc-ss Exy
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and

Exx cc ss 2cs Exx
Eyy ss cc -2cs EYY (3.3-6d)
xy -cs cs cc-ss E

where, for example, cs denotes the product of the Cosine and Sine of

the angle e.

Stresses - The stresses transform between the Cartesian coordinate

systems x-y-z and X-Y-Z in exactly the same manner as do the strains.
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4.0 SOLUTION METHOD

4.1 BASIC SOLUTION REQUIREMENTS

The exact elasto-plastic-creep analysis of a structure requires the

satisfaction, at all points in the structure, of three requirements:

1. satisfaction of constitutive theory, which is summarized by the

appropriate incremental stress-strain relation

2. compatibility of strains

3. equilibrium of stresses

The following paragraphs summarize the BOPACE solution approach as it

relates to satisfying these three requirements.

Stress-Strain Relation - The incremental stress-strain relation is de-

fined by Equation 2.5-6, and it is satisfied exactly in the BOPACE solu-

tion procedure, provided the increment is sufficiently small so that

incremental quantities can be treated in a differential manner. Be-

cause of the state of constant strain and stress which exists within

a CST finite element, the stress-strain relation for each element holds

over the entire area of that element.

Compatibility - Compatibility is satisfied exactly within each element

as a result of the finite-element derivation. In the global sense, i.e.,

over the entire structure, compatibility is also satisfied exactly,

by merging the element degrees of freedom into global degrees of freedom
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4.1 (Continued)

and thereby establishing the equality of displacements at appropriate

adjacent nodes.

Equilibrium - Equilibrium is satisfied exactly within each CST element

because of its constant stress state (as long as there are no distributed

loads). Stresses are not necessarily in equilibrium between adjacent

elements, although stress equilibrium is satisfied there in the limit as

the finite-element mesh is refined. For any mesh representation of the

structure, global equilibrium is satisfied in BOPACE in an average sense,

because equilibrium is established between the generalized nodal forces

defined according to the usual finite-element procedure.

4.2 COMPARISON OF COMMON SOLUTION METHODS

The common stiffness methods used for solution of elasto-plastic problems

can be classified by three general types:

I. The pure "tangent stiffness" method

2. The "constant-stiffness residual-load" method

3. "Combined" methods

Tangent-Stiffness Method - The pure tangent-stiffness method obtains

the solution for each load increment by a single solution of the incre-

mental equilibrium equation:

APi = K AOj (4.2-1)
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4.2 (Continued)

in which AP and AQ are the global incremental forces and displacements,

respectively, and KJ is the Jacobian (tangent-stiffness) matrix. This

is the type of solution used in NASTRAN's "piecewise linear analysis",

for example. There is no equilibrium check, and no iteration is per-

formed to improve the incremental solution. The matrix KJ is determined

by evaluation or extrapolation at previous solution points. Because in

an actual structure the stress-strain slopes, creep rates, direction of

the incremental plastic and creep strain vectors, etc., will generally

vary within an increment, the pure tangent-stiffness approach can result

in a substantial departure from the true force-displacement path unless

load increments are kept quite small.

Constant-Stiffness Residual-Load Method - This solution method [9]

employs an iterative procedure. In each iteration the residual (un-

balanced) forces are computed based on the current estimate for the

incremental configuration, and are then applied to the constant elastic

stiffness matrix in order to solve for displacement corrections. The

approach is computationally efficient because it requires the formation

and decomposition of only a single stiffness matrix, but it is not

directly applicable to highly nonlinear structures because of con-

vergence difficulties.

Combined Methods - Various combined methods have been employed for

solution of elasto-plastic problems, for example that described in

Reference 12. These involve the use of an equilibrium check through
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4.2 (Continued)

the calculation of unbalanced forces, as well as various procedures for

updating the approximate Jacobian matrix.

BOPACE Approach - BOPACE uses a combined approach for solution, with

the iterative procedure consisting of two basic parts:

1. Calculation of residual nodal forces based on the estimated

configuration and "exact" constitutive theory.

2. Improvement of the solution configuration by reducing the residual

forces.

Several user controlled options are available in BOPACE for updating the

Jacobian matrix.

4.3 CALCULATION OF UNBALANCED FORCES

It is assumed for the present discussion that the exact solution configura-

tion is known at the start of a particular load increment. (Actually

the BOPACE program takes any unbalanced forces which might remain from

the previous increment and adds them to the present load increment, in

order to achieve greater accuracy.) For a given iteration within the

present increment, i.e., for a given estimate of the incremental solution,

it is necessary to compute the corresponding unbalanced forces. This

section describes the steps involved in computing these forces, including

determination of element strains, element stresses, and forces. A flow-

chart for these calculations is given in Figure 4.3-1.
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4.3 (Continued)

Element Strains - For the given estimate of incremental global displace-

ments, AQ, the corresponding element displacements, Aq, are obtained by

coordinate transformations of the type 3.3-3a. Element strains, AE,

are then computed using the strain-displacement matrix of Equation 3.1-2:

Aei = rij Aqi  (4.3-1)

The strain AE is the total (physical) strain increment in the element:

AEi = AE + A (4.3-2)
1 1 1 1 1

The thermal strains, A t , and creep strains, Ac , are determined as des-

cribed in Sections 2.2 and 2.4, respectively. Subtracting these strains

from the total strain, gives:

e+p e t c (4.3-3)A : = Ac + Ad = AEi - Ac - As (4.3-3)1 1 1 1 i i

Element Stresses - Incremental stresses are then computed using the

elasto-plastic relation 2.5-6 (see also Reference 13):

Au. = AD.. eO + D1 e+p (4.3-4)

where eeO are the known cumulative elastic strains at the beginning of

the increment. This relation holds only if the element is plastic

throughout the load increment. Therefore, the calculation of AG may

need to be modified, depending on which of three conditions exists

within the particular element:
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4.3 (Continued)

Condition I element is elastic at end of load increment,

i.e., either the element remains elastic or

unloading occurs. Compute stress and elastic

strains. Plastic strains are zero.

Condition II element is plastic throughout load increment.

Compute stresses, elastic and plastic strains

from Equation 4.2-4.

Condition III element is initially elastic, but becomes

plastic at some point during the load incre-

ment. Find intermediate point at which

yielding occurs (this requires solving a simple

quadratic equation). Compute stresses and

elastic strains up to that point. Compute

stresses and strains beyond yielding as for

Condition II.

The condition at the beginning of the increment is known for each element.

The condition at the end of the increment is assumed, for the first

iteration, to be Condition I. The end condition is re-evaluated during

each iteration, using either the yield point or the plastic-strain

vector. For an elastic element, it is determined whether or not the

current yield point has been exceeded. For a plastic element, the

plastic strain vector (normal to the yield surface) is observed; an out-

ward vector (x>O) implies a plastic condition, while an inward vector

(xf0) implies elastic unloading.
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GIVEN A 
e+p

GIVEN CURRENT YIELD AND FLOW
PARAMETERS, ELEMENT CONDITIONS

JM - AD
e  

eo + DeA e+p

35 4PLASTIC ELEMENT ELASTIC

CONDITION AT START PLASTIC Ace * Ace+p
OF INCREMENT AEP 0 0

ELASTI C  6 f 0

r fl

COMPUTE f = FRACTION
OF STRAIN INCREMENT
TO YIELD

COMPUTE x USING A 7 ]p

99 p -(1-f 7),:iS

1 0 A c - D e l A .pI=
UPDATE YIELD AND LOW
PARAMETERS, ELEMENT
CONDITIONS

12 COMPUTE FORCES AP
FROM STRESSES do

13
6P APPLIED LOAD - AP

Figure 4.3-1: BOPACE UNBALANCED-FORCE CALCULATIONS
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4.3 (Continued)

Element Forces - The element force-stress relation for the CST element

is directly apparent from the expressions for the strain-displacement

and stiffness matrices given in Equations 3.1-2 and 3.1-3. The relation

is

APi = A Aoj (4.3-5)

where A is the element area, r is the strain-displacement matrix, and pi
are the element nodal forces.

Global Unbalanced Forces - Incremental global forces, AP, are obtained

from the incremental element forces, by adding nodal contributions from

all elements and applying transformations of the type 3.3-4a. The global

unbalanced forces, aP, are then determined by subtracting these computed

(internal) incremental forces from the applied (external) incremental

loads:

6Pi = (A Load) i - APi  (4.3-6)

4.4 IMPROVING THE SOLUTION

The basic global relation for incremental forces and displacements cor-

responds to the element relation 3.1-7:

A i = (AK . + AK~ ) QeO + (Kel + K ) AQe + p  (4.4-1)

where the first term accounts for forces due to change in elastic proper-

ties, and the second term accounts for forces due to change in elastic

strains.
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4.4 (Continued)

In order to improve a given displacement configuration, the displacement

corrections 6Q corresponding to unbalanced forces 6P, are obtained in

BOPACE by solving a set of linear equations of the form

6Pi K 6Q (4.4-2)

The matrix KJ is the Jacobian (tangent-stiffness) matrix, or some approxi-

mation to the Jacobian. The purpose of this section is to discuss the

procedure for relating Equations 4.4-1 and 4.1-2, and describe BOPACE

options for updating the Jacobian.

Procedure - In the iterative BOPACE approach, the only global solution

employed is the displacement-correction relation 4.4-2. The best

approximation for the Jacobian is

KJ = Kel + Kpl (4.4-3)

where Kel and Kp l are evaluated at the end of the current load increment.

The effects of change in elastic properties (AKe and AKP), as well as

the effects of thermal and creep strains, are computed on the elemental

level and accounted for by the unbalanced forces. Thus Equation 4.4-1

is satisfied in an iterative fashion.

Updating the Jacobian - In order to account for possible large-scale

elastic unloading of the structure under cyclic load conditions, one or

more initial iterations are performed for each load increment using

only the elastic portion, Kel, of the KJ matrix. Succeeding iterations

use the total KJ matrix.
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4.4 (Continued)

Initially the KJ matrix is taken to be the usual elastic stiffness matrix

for the structure, with elastic properties evaluated at the fabrication

temperature. Whenever convergence is not achieved within a specified

number of iterations, the Jacobian matrix is updated. BOPACE allows

five options for updating the matrix KJ and/or its component matrices

Kel and Kp l .

1. Use only elastic matrix Kel with no updating. This option corresponds

to the constant-stiffness residual-load method, and is most effective

for problems with small plastic strains and elastic properties which

do not vary much with temperature.

2. Update only Kel. This option is best for problems with small plastic

strains and elastic properties which vary considerably with tempera-

ture.

3. Update only KP1 . This option is best for problems with large plastic

strains and elastic properties which do not vary much with temperature.

4. Update total KJ matrix, but not its component matrices. This option

may be used for problems with large plastic strains and elastic

properties which vary somewhat with temperature.

5. Update both K , and Kel and Kp l matrices. This is the most effective

option for problems with large plastic strains and elastic properties

which vary considerably with temperature.
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4.5 SUMMARY OF BOPACE SOLUTION METHOD

An outline of the BOPACE solution method is given in the flowchart of

Figure 4.5-1. In step 1, the Jacobian is initialized to the elastic

stiffness matrix, based on elastic properties at the fabrication tem-

perature.

At the start of each load increment (step 2) the residual forces 6P are

set equal to the increment of applied loads. Also, if any residual

forces remain from the previous load increment, these are added to 6P.

The estimate for incremental displacements, AQ, is set to zero.

The iteration loop involves successive improvement of the solution, by

solving for displacement corrections using the unbalanced forces

and the Jacobian, and then recomputing the unbalanced forces cor-

responding to the new displacement configuration. The displacement

corrections 6Q are determined in step 3, and in step 4 the improved

incremental configuration AQ is updated by addition of 60. Although

convergence of this iterative process is usually quite good, BOPACE

has a feature for modifying the process if convergence is not occurring.

This involves using only a specified fraction of the computed correction,

e.g., AQ AQ + 0.5 SQ. This would increase the numerical stability

but could tend to slow down convergence.

In step 5 the strain-displacement relations are used to compute the total

incremental strains AE from displacements AQ. The thermal and creep

strains are then determined in step 6, and subtracted from total strains

to give the elastic+plastic strains required for the calculation of
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4.5 (Continued)

incremental stresses. Step 7 involves the major iteration algorithm,

in which the strain is separated into elastic and plastic components.

Incremental stresses are determined according to Equation 2.5-5, and

the corresponding unbalanced forces are computed.

If the maximum allowable iterations have been exceeded, step 8 is used

to update the Jacobian matrices according to the specified updating

option. The Jacobian update is based on the current estimates of

the yield surface and flow parameters for each element at the end of

the present increment. Iteration is stopped when an error norm

(determined by a ratio of residual forces to applied forces) is

sufficiently small.
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1 INITIALIZE JACOBIAN (KJ Kel)

6P APPLIED LOADS
AQ + 0I

SOLVE6P = K 6Q

hQ AQ + 6Q I I

COMPUTE PHYSICAL STRAINS Ac , I
FROM DISPLACEMENTS AQ I)

6 SUBTRACT THERMAL AND CREEP STRAINS:

A e+p  - E - AE

COMPUTE NEW UNBALANCED FORCES 6P FROM STRAINS A-e+p

(SEE FIGURE 4.3-1)

8

UPDATE K , Kel, KP1 IF REQUIRED

- I I

Figure 4.5-1: BOPACE SOLUTION
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5.0 LINEAR EQUATIONS

5.1 LINEAR EQUATION FORMATION

Single Element - Figure 5.1-1 shows a linearly elastic spring. It is

defined by its nodal points 1 and 2, and its stiffness coefficient, k

(force/displacement). Forces Fx and displacements u are assigned to the

nodes as shown in the figure. It is then desired to determine the stiff-

ness matrix for this element. To do this consider all possible displace-

ment modes which the spring is capable of experiencing.

Fxi ,ul k Fx2,u2

1 2

Figure 5.1-1: ELASTIC SPRING AS A FINITE ELEMENT

For example,

a. u1 = 0, u2 / 0

For this case it is clear that Fx2 must be an applied load, while Fx1 is a

reaction. Also, u2 is an unknown displacement. From the definition of k,

k = Fx2 or Fx2 
= ku2

Equilibrium of forces gives,

Fx1 = -Fx2

b. u1 / 0, u2 = 0
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5.1 (Continued)

This is the second (and final) displacement state which the spring element

can undergo. Conditions are now reversed from those which applied in the

first case; that is, Fx1 is now an applied load and ul are unknown displacement.

The applicable equations are therefore,

k = Fx1  or FxI = ku1

and

Fx2 = -Fx1

Now assume the superposition of the individual displacement modes. Then

u 0 and u2  O0. From cases (a) and (b) above it then follows that,

Fx1 = kul - ku2

Fx2 = -kul + ku2

or in matrix form,

Fx)1 k -k] i u().

or simply,

{F} = [K] {u} (5.1-1b)

In this equation [K] represents the element stiffness matrix. It is seen

to relate nodal displacements and corresponding nodal forces. The most

important characteristics of a finite element are represented by its

stiffness matrix.
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5.1 (Continued)

Assemblage of Spring Elements - Consider now an assemblage of spring

elements as shown in Figure 5.1-2. Nodes are given as 1, 2, 3, and 4.

The elements are connected to each other at the nodes. Each spring has

a different stiffness as designated by the constants ka, kb, and kc.

It is then desired to find the stiffness equation for this assemblage.

ka kb kc
X,U

1 2 3 4

Figure 5.1-2: ASSEMBLAGE OF FINITE SPRING ELEMENTS

Nodal forces are Fxi , i = 1, 2, 3, 4 and the corresponding displacements are

simply ui . All possible displacement configurations for this system can be

obtained by superimposing the four basic states. These occur as each node is

displaced in turn, the other nodes in the meantime being held fixed. As in

the case of the single element these displacement states can be imposed on the

assemblage. The relevant force-displacement expressions can then be written

for each case as follows:

a. u1  0, ui = 0, i = 2, 3, 4

Only spring 1-2 is strained. FxI can be considered an applied load and Fx2 a

reaction. No forces are carried through to nodes 3 and 4. Hence,

ka = Fxl or Fx1 = kau1
u5-3
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5.1 (Continued)

and by equilibrium,

Fx2 = -Fx1 = -kaul

b. u2  O, ui = 0, i = 1, 3, 4

Both springs 1-2 and 2-3 are now strained. Fx2 is the applied load. Reactions

occur at nodes 1 and 3. No load carries through to node 4. Let,

Fx2 = (Fx2)a + (Fx2)b

so that,

ka (FX2 a k = (Fx2)b

u2  U2

then,

Fx2 = (ka + kb) u2

while,

Fx1 = -(Fx 2)a = -kau 2

Fx3 = -(Fx 2)b = -kbu2

c. u3 # O, ui = 0, i = 1, 2, 4

This is similar to case (b). By a similar calculation it follows that,

Fx3 = (kb + kc) u3

Fx2 = -kbu 3 and Kx4 = -kcu 3

d. u4  O0, ui = 0, i = 1, 2, 3
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5.1 (Continued)

This is similar to case (a). Hence,

Fx4 = kcu 4 and Fx3 = -kcU 4

e. ui  0, i = 1, 2, 3, 4

This is the general case. It is obtained by superimposing the first four

cases. Collecting terms from the previous force-displacement equations yields,

Fx1 = kau 1 - kau 2

Fx2 = -kaul1 + (ka + Kb) u2 - kbu 3

Fx3 = -kbu 2 + (kb + k ) u3 - kcU 4

Fx4 = -kcU 3 + kcU 4

In matrix form,

Fx1  ka -ka 0 0 u1

Fx2  -ka (ka + kb) -kb 0 u2

Fx3  0 -kb (kb + k ) -kc  (5.1-2a)

Fx4  0 0 -k k u

u4

or again,

{F} = [K] {u} (5.1-2b)
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5.1.1 (Continued)

The assemblage stiffness matrix is shown in Equation 5.1-2a. Note that

its order (4 x 4) is governed by the number of distinct nodal displacements

which the assemblage can experience. Some other important features about

[K] are as follows: (a) it is a square, symmetric matrix; (b) the stiffness

matrix for an assemblage is only sparsely populated with non-zero elements

and these can be banded along the main diagonal; (c) the sum of elements in

any column (or row) is zero; (d) the stiffness matrix is singular 
or the

determinant of [K] vanishes. These properties are important and except

for (c) are generally true for any problem*. They will be referred to from

time to time in this document.

A useful form for writing a stiffness matrix is shown in Equation 5.1-3.

The matrix is the same as previously given in Equation 5.1-2a.

u1 u2  u3  u4

ka -ka 0 0

[K] -k a  (k a + kb) -kb 0 (5.1-3)

0 -kb (kb + kc) -kc

0 0 -kc kc

Note that the column of displacements {u} in Equation 5.1-2a has simply

been turned into a horizontal position and written above the columns making

up [K]. Actually Equation 5.1-3 is sufficient for defining the total

stiffness equation since the order of terms in the force column {F} must

agree with that given for {u}. See Equation 5.1-2a.

* Vector sum of "forces" are zero; however moment terms require products
of moment arms and forces in the moment equilibrium equations.
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5.1 (Continued)

Fortunately a simple, direct procedure exists for forming the assemblage

stiffness matrix. In other words it is not necessary to use the procedure

just described for the spring assemblage. Instead the total assemblage

stiffness matrix can be formed directly from the stiffness matrices for the

individual elements.

Assemblage Stiffness by Superimposing Element Stiffnesses - It can be

shown rigorously and is here demonstrated for the assemblage of Figure

5.1-2 that superimposing the stiffnesses of the component elements

will yield the stiffness matrix for the assemblage. It is this pro-

cess which characterizes the direct stiffness method.

Prior to superposition a simple preliminary step is necessary; namely, to

increase the order of each element stiffness matrix to that applying to

[K] for the total assemblage. This is done by simply adding columns

of zeros (plus corresponding rows) for each displacement inapplicable to

the given element. For example, for spring 1-2 of Figure 5.1-2,

displacements u3 and u4 are irrelevant; hence,

uI  u2  u3  u4

ka -ka 0 0

-k k 0 0

[Ka]

0 0 I0 0

0 0 10 0
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5.1 (Continued)

The columns and rows of zeros are seen to apply to u3 and u4. Likewise

for the other two springs,

uI  u2  u3  u4  u1  u2  u3  u4

0 0 0 0 0 0 0

0 k b -kb 0 0 0 0 0
----------------------[Kb [Kc][Kb] -- - - - -i

0 -kb kb 0 0 0 kc -k

0 0 0 0 0 0 -kc  k

Summing the element stiffness matrices is now seen to lead directly to [K]

for the assemblage as given by Equation 5.1-2a or Equation 5.1-3. In

carrying out this superposition the 2 x 2 non-vanishing parts of the

element stiffness matrices are seen to lie along the main diagonal as

illustrated by Equation 5.1-4. As a result the tendency of the gross

stiffness matrix to be sparsely populated by non-zero elements, which are

banded along the main diagonal, can be appreciated. This fact is important

in the numerical calculations which lead to the solution for the unknown

displacements, particularly for large problems.

U1  U2  u3  U4

[K] = (5.1-4)

L 5-...
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5.1 (Continued)

Shaded areas in Equation 5.1-4 represent regions where element stiffnesses

overlap and hence jointly contribute to the gross stiffness. Non-zero

terms lie inside the three boxes labeled Ka, Kb, and Kc respectively.

Forming the assemblage stiffness matrix may be regarded as the key to the

stiffness method of solution. The procedure as illustrated above for

carrying out this step is well suited to machine operation. The

computer determines the individual element stiffness matrices and then

combines these to form the gross stiffness matrix.

Special Equation Generation - Figure 5.1-3 shows two triangular plates

connected at a single node.

1 2
A

S(TYPICAL)5,5

B (TYPICAL)
-. Fx5,U5

(TYPICAL)

Figure 5.1-3: TWO PLATE ASSEMBLAGE
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5.1 (Continued)

The two plates are defined by their nodal points 1, 2, and 3, and 3, 4, and

5. Forces Fx and Fy, and displacements u and v, are assigned to each

node as shown for node 5 in the figure. Each plate has a 6 x 6 stiffness

matrix as shown in Equation 5.1-5.

akxx akxy akxy akxy a xx akxy
1 11  11 12 12 13 13 1

F akyy akyx akyy akyx akyy v
1  11 12 12 13 13 1

Fx akxx akxy a xx a kxy (5.1-5a)
2  22 22 2 3  23 2

Fx2  akyy akyy akyy v
x22 23 23 2

Fx (SYM) akxx a k33 u
3  33  33 3

akyy v
Fy3  33 3

Fx bkxx bkxy b xx bkxy bkxx bkxy
3 33 33 34 34 35 35 3

Fy bkyy b kxx bkyy bkyx bkyy v33 33 34 34 35 35

Fx b kxx bkxy b xx bkxy
4 44 44 45 45 (5.1-5b)

(SYM)
Fx4  bkyy bkyx bkyy v

44 45 45 4

Fx5  bkxx bkxy
55 55
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Fx kxx a xy a axy axx 0 0 0 u1 11 11 12 12 13 13 1

akyy akyx akyy akyx akyy v
FY1  11 12 12 13 13 1

Fx akxx akxy a kxx akxx 0 0 0 0 u2 22 12 23 23 2

Fy2  aky akYx akyy 0 0 0 0 v2 12 23 23 2

Fx a xx bxx akxy bxy b xx bxy bxx bkxy

x3  33  33  33 33 34 34 35 35

(5.1-6)

Fy akyy+bkyy bkyx bkyy bkyx bkyy v3 33 33 34 34 35 35 3

Fx (SYM) bkxx bkxy bkxx bkxy
444 44 45 454

Fy4  bkYY b kYx b kyy
FY4 44 45 45

Fx bkxx bkxy5 55 55 5

Fy5  bk44  vFY5 55 V5



FxI  axx ak x akxx akxy k k 0 0 0 0 ul
11  11  12 12 13  13

Fyl a yy ayx akyy akyx ak0 0 0 0 0 v1
Fl11 12 12 13 13

Fx ak xx a kxy akxx akxy 0 0 0 0 0 u
Fx2  22 22 13 23 2

Sakyy akyx aky 0 0 0 0 0 V2
Fy2  22 23 23

aFx akxx axy xy 0 0 0 0 au
Fx3  23 33 3

=a bkyy bkyx bkxx bkyy bkyx3  bkY v
FY3  33 33 33 34 34 35 35 (5.1-7)

bkxx bkxx bk xy bkxx bkxy u3
3 33 34 34 35 35

bkxx bkxy b xx bkxy u4

Fx4  (SYM) 44 44 45 45

bkY4 bkyx bkyy v4
Fy4  44 45 45

bkxx bk xyFx5  55 55

5  yy
FY 55 v5
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5.1 (Continued)

Merging these matrices using superposition as described in the preceeding

section yields a 10 x 10 matrix for the entire assemblage as shown in

Equation 5.1-6. Note that the displacements u3 and v3 are constrained

to be equal for the two elements.

Structural discontinuity is idealized by allowing one or more of the

displacements at a connecting node to be unconstrained in the displacement

of the attached elements, while the remaining displacements of the node

are constrained to be equal.

The equation generation procedure is modified to handle this condition.

In the problem of Figure 5.1-3 assume that the v displacements at node 3

of the two elements are constrained to be equal, and the u displacements

are constrained. Merging the elemental stiffness matrices of Equations

5.1-5a and 5.1-5b for this condition yields an 11 x 11 matrix for the

entire assemblage as shown in Equation 5.1-7.

5.2 SOLUTION OF EQUATIONS

Introduction - The stiffness equations can be written in matrix form

as shown in Equation 5.2-1:

{F} = [K] {Q} (5.2-1)

where {F} is the force vector

[K] is the stiffness matrix

{Q} is the displacement vector
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5.2 (Continued)

The solution of Equation 5.2-1 generally involves a mixed set of known and

unknown forces and displacements. Traditionally the approach has been to

reorder the equations collecting the known and unknown forces and

displacements such that Equation 5.2-1 is rewritten in partitioned matrix

form as shown in Equation 5.2-2:

Fu 21 22

where the subscripts are

k = known

u = unknown

While this approach is efficient and yields accurate solution, the re-

ordering necessary is a tedious detail which should be bypassed when

possible. A somewhat different approach is the wavefront method, which

is efficient and as accurate as any other method. The approach is to

decompose the n x n stiffness matrix [K], then solve for the unknown

forces {Fu} and displacements {Q u by a forward and backward substitution.

The solution steps are first shown here for a system of equations involving

lonly known forces and unknown displacements. Then the modifications are

described for the general case of mixed known and unknown forces and

displacements.
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5.2 (Continued)

Solution with Known Forces - The decomposed form of Equation 5.2-1 takes

the form

[U]T  [D] -I  [U] {Qu }  = {FK} (5.2-3)

where [U] is an upper triangular matrix, and [D] is a diagonal matrix whose

elements are the diagonal elements of [U]. The solution is in three steps.

1. Decomposition

The elements of K are

i-I -
K.. = e Uki Dk Ukj + U.. D.. U (5.2-4)
'3 k=l kk Uk 11 1 U.

Since D. = U.., the elements of U are obtained successively by

row, as

i-I -1

Uij = Kij - k=1 Dkk Uki Ukj (5.2-5)

2. Forward Substitution

Let Y = D- 1 U Q

then
i-l

F E U ki Yk + Uii Y. (5.2-6)
k=1

giving
i-I

Yi = D-  (Fi - Uki Vk)  (5.2-7)
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5.2 (Continued)

3. Backward Substitution

Y. = E D U Q + D U.i Q (5.2-8)1 k=i+l 11 ik k ii i

giving

Qi = Y - D kil Uik Qk (5.2-9)
Sk=i+l

Solution of Mixed Set - For the general case where there is a mixed

set of known and unknown forces and displacements, the three solution

steps must be modified. The procedure as described is for the case in

which a single displacement (the rth displacement) is known, with the

corresponding rth force unknown. Additional known displacements with

corresponding unknown forces would be treated in the same manner.

The modified form of the decomposed matrix is given by Equation 5.2-3:

U11] [lrl Fln] (D1  11 ui lUlr] [Uln QI (F

0 [Urr] [Urn] T L [] u [ ,,Ur ] I( r -Fr) (5.2-10)
0 0 [U ] [Dn 0 0 [U I {Q ifn )

where Qr' and F1 and Fn denote known quantities. The elements of U are

given by equation 5.2-4 except that no contribution from [U rm] is distri-

buted to the elements of [Unn]. Detailed steps are:
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5.2 (Continued)

1) Decomposition

First rows: Compute each row (1 to r-l) according to Equation 5.2-4

and distribute contributions to later rows.

rth row: Compute the rth row of U according to Equation 5.2-4 but

do not distribute contributions to later rows.

Last rows: Compute each row (r+l to r) according to Equation 5.2-4 and

distribute contributions to later rows.

2) Forward Substitution

First rows: Compute

{Y11 = [U1 1 
1 {FI} using Equation 5.2-7 (5.2-11)

and distribute to {Yr } and {Yn}. This produces the vector

Y r -y [Ulr T {Y 1 (5.2-12)

{Yn } = [Uln ]  {Y1 }

rth row:

The rth row of Equation 5.2-3 gives the relationship

([i] I{,r} {{F} -

[Urr] , [Urn) Qr} = {Fr} - [Ulr Ty (5.2-13)
{Qn}

where -[Ulr]T {YI } is from Equation 5.2-11 and replaces {Fr} , and

{Yr } is set to {Qr } and contributions are distributed forward as in

Equation 5.2-6.
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5.2 (Continued)

Last rows:

Continue forward substitution by Equation 5.2-6 to obtain

{Y2 } = [Tn]  Fn  - [Urm] T {Q - [Uln] T { (5.2-14)

3. Backward Substitution

Last rows:

From Equation 5.2-8

{Qn } = [U2 2
]-1 (D2 2] {Y n (5.2-15)

rth row:

From Equation 5.2-12

{Fr = -[Ulr {Y} + [Urr] {Qr) + [Urm] Qn) (5.2-16)

First rows:

From Equation 5.2-8

1  = [U11
1 [D11] {Y1} - [Ulr] {Qr - [Ulm {Qn} (5.2-17)
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6.0 DEFINITIONS

This section defines symbols used in the BOPACE Theoretical Manual. Symbols used

in Section 5 (on solution of linear equations) are not included here, because

that section uses somewhat different notation and is considered to be self

contained.

Variables

a Deviatoric stress center

b Displacement-function coefficient

c Kinematic hardening slope

c,s Cosine, Sine abbreviations

k Element stiffness matrix

p,q Local nodal forces, displacements

r Isotropic hardening slope

s Deviatoric (total - hydrostatic) stress

s s - a = relative deviatoric stress

u,v Local displacements in X,Y directions

x,y Local Cartesian coordinates

A Elasto-plastic hardening parameter

C Kinematic hardening matrix

D Elasticity matrix

E Young's modulus; global strain

F Yield surface function

Fc Creep hardening factor

Fk Kinematic hardening factor

I Identity matrix
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6.0 (Continued)

K Global stiffness matrix

KJ  Jacobian (tanaent-stiffness) matrix

0 Origin of coordinates

P,Q Global nodal forces, displacements

R Isotropic hardening matrix

T Temperature

W Work

R,e Cylindrical coordinates

aStress center of yield surface

E Strain

Direction of yield surface stress correction

p Scalar factor for yield surface stress correction

y Thermal coefficient of expansion

K Cumulative plastic hardening parameter

K c Creep hardening parameter

K k Kinematic hardening parameter

Stress coefficients for prescribed normal stress

v Poisson's ratio

x Plastic flow parameter

a Stress

Transformation matrix

Subscripts

i,j,k,z,m,n General indices
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6.0 (Continued)

Superscripts

0 Start-of-increment quantity

1 End-of-increment quantity

0 Known test value

c Creep quantity

e Elastic quantity

p Plastic quantity

e+p Sum of elastic and plastic quantities

t Thermal quantity

Special Symbols

6( ) Residual (corrective) quantity

AC ) Incremental quantity

( )T Matrix transpose

( )-1 Matrix inverse

(-) Effective quantity

Summation

Proportional

Non proportional
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